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Some aspects of crack growth and failure 
in fibre reinforced composites 
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Wolfson Institute of Interfacial Technology, University of Nottingham, Nottingham, UK 

A theoretical analysis, previously developed to deal with the machanics of matrix 
cracking in unidirectional composites and with transverse ply cracking in cross ply 
laminates, has been developed further to deal with the tensile failure of unidirectional 
fibrous composites in with the fibres have a known distribution of strengths. It is 
proposed that, under the application of a tensile load, stable transverse cracks are formed 
which originate from regions of initial damage and which become unstable at some 
critical strain value. The model takes account of various parameters including the inter- 
facial fibre/matrix debonding energy, the residual frictional shear strength of the 
debonded interface and the elastic properties of fibres and matrix. Comparisons are 
made between the predictions of the model and the observed failing strains of the 0 ~ plies 
in carbon fibre polymer matrix laminates. The relevance of the model to the study of 
delayed fracture in fibrous composites is discussed. The modification of this model, 
previously developed to describe crack growth in the transverse plies of 0~ ~ laminates,' 
is used to predict the initial cracking strains for a wide range of CF RP laminate 
geometries and initial crack sizes. Some aspects of the mechanics of crack extension 
across interply interfaces are discussed. 

1. Introduction 
There are many possible modes of failure in fibre 
reinforced composites and the complexity of the 
micromechanics of these processes makes it 
impossible at the present time to evolve a compre- 
hensive and exact theoretical analysis of them. 
It is possible however to develop analytical models 
based on simplifying assumptions. In this paper 
the mechanics of some particular failure processes 
are analysed by first assuming the form of the 
strain field extending over a fairly large area 
around a crack or region of damage and then 
calculating from the postulated strain field the 
energy release rate with increasing crack length. 
Consideration is given to the mechanics of the 
growth of a crack bridged orthogonally by 
reinforcing members and loaded in tension in a 
direction parallel to their alignment. In this way 
the necessity to describe the form of the strain 
field close to the tip of the propagating crack 
is avoided. This is of particular convenience in 
the case of fibre reinforced systems where the 
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occurrence of cracking parallel to the fibres and' 
the development of damage zones near the tip of 
the primary crack make it difficult to define the 
stress field in this region. The model accommodates 
a limited amount of splitting parallel to the fibres 
since the strain field around the primary crack is 
assumed to be divided into a number of parallel 
independent segments. However, the model is 
only valid if matrix splitting parallel to the fibres 
at the crack tip occurs over distance which are 
short compared with the length of the primary 
crack. If this is not the case the elastic relaxation 
of the material will not be confined, as assumed, 
to a localized region in the general vicinity of the 
crack. The model has been used previously to 
analyse the mechanics of the growth of a crack in 
the following systems: reinforced sheet metal [1], 
unidirectionally reinforced brittle matrix com- 
posites [2], and the cracking of the transverse 
plies in 0o/90 ~ cross ply laminates [3]. 

In Section 2 the basic analytical model used 
is given in outline. In Section 3 comparisons are 
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made between the predictions of the theory and 
the observed inhibition of matrix cracking in 
steel wire reinforced epoxy resin composites 
reported by Cooper and Sfllwood [4]. The theory 
is modified in Section 4 to deal with the mech- 
anics of  the extension of a region of damage 
caused by the localized failure of a number of 
fibres. The predictions of this analysis are com- 
pared with the observed tensile strengths of 
unidirectional systems and the mode of failure 
in corrosive environments which would be pre- 
dicted from the model is discussed. 

A version of the model has previously been 
designed to deal with the cracking of a transverse 
ply in a cross ply laminate and shown to predict 
results in close numerical agreement with exper- 
imental observations [3]. In Section 5 this version 
is used to predict the cracking behaviour of a wide 
range of cross ply CFRP (carbon fibre-reinforced 
plastic) systems containing initial cracks of various 
sizes and a computational error made in a previous 
paper is corrected. In Section 6 the general validity 
and limitations of the various versions of the 
model are discussed and related to observed 
fracture processes in fibrous composites materials. 

2. The analytical model 
The classical Griffith [5] expression defining o e 
the critical stress for unstable growth of a crack 
of half length, a, in an isotropic elastic plate in 
plane stress and subjected to a remote tensile load 
applied in a direction perpendicular to the major 
axis of the crack is given by, 

7raa~ 
7p = E (1) 

where "Tp is the work of fracture of the material 
at the crack tip and E is its Young's modulus. 
Equation 1 is obtained by integrating the strain 
field around the crack as defined by elasticity 
theory, differentiating it with respect to increasing 
crack length and equating this with the work being 
done in rupturing the material at the crack tip. 
The most elementary physical model of the stress 
field around the crack which yields the same 
numerical result is one in which a zone around 
the crack equal in area to twice that of a circle 
having the crack as its diameter has relaxed com- 
pletely. The material outside this zone is subjected 
everywhere to a uniform stress oe. The zone can 
be assumed to be elliptical in shape in which case 
its major axis is twice the length of the crack. The 

assumption of a sudden transition at the edge of 
the elliptical boundary from zero stress to the 
general stress ac carried by the material is clearly 
very far from physical reality. A better physical 
approximation can be achieved by assuming a 
uniform increase in stress in the direction of the 
applied load from zero at the crack face to ac at 
the edge of the partially relaxed zone. If the shape 
of this zone is again assumed to be elliptical, its 
major axis has to be increased to three times the 
crack length in order that the amount of strain 
energy released from within the elliptical zone 
should be numerically equivalent to that derived 
from elasticity theory. If  the applied stress gen- 
erates a strain e~, the strain gradient for this model 
has a minimum value of er along the major 
axis of the partially relaxed elliptical zone. This 
strain gradient increases as the crack tip is 
approached becoming infinetely large at the 
crack tip. 

The influence of crack bridging reinforcing 
fibres can be easily calculated for this simple 
model. The fibres are assumed to cross the crack at 
right angles to its faces and the external load is 
applied in the direction of fibre alignment. The 
fibres carry an enhanced strain where they bridge 
the matrix crack and the additional load carried 
by the crack bridging fibres is assumed to be trans- 
ferred back to the matrix at a constant interfacial 
shear stress value of r. Thus the strain carried by 
the crack bridging fibres decreases linearly with 
increasing distance from the crack faces. The 
crack bridging fibres inhibit the elastic relaxation 
of the matrix on each side of the crack so that the 
matrix strain is increased over the values which 
would have been developed in the absence of the 
reinforcing fibres. 

One half of the strain field which would be 
developed around a matrix crack bridged by fibres 
on the basis of this argument is shown in Fig. 1 
where strain values are indicated on the vertical 
axis. The diagram shows that the strain carried 
by fibres and matrix must be equal at some par- 
ticular distance from the crack face. It is assumed 
here that no further stress transfer takes place 
when this condition has been reached so that the 
strain carried by fibres and matrix remains con- 
stant at increasing distances from the crack face. 
Eventually a position of the strain field, which 
would have been developed in the absence of the 
reinforcing fibres, is reached. It is assumed that, 
beyond this point, the strains carried by fibres 
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CRACK BRIDGED BY 
F I BRES ,~: 7-~_ 

Figure I Schematic illustration of one 
half of the  assumed strain field 
developed around a matrix crack 
bridged by reinforcing fibres. Strain 
values plotted on the vertical axis. 
Full lines indicate the strain field 
which would be developed in the 
absence of the reinforcing fibres. 

and matrix follow this strain field up to the edge 
of  the elliptical zone. Since all of  the perturbations 
of  the strain field are assumed to take place within 
the elliptical zone it follows that the length of  the 
crack bridging fibres traversing the Zone must be 
unchanged by the occurrence of  the matrix crack. 
This boundary condition enables the geometry of  
the strain field illustrated in Fig. 1 to be calcu- 
lated, and an arbitrary section through the strain 
field parallel to the fibres is shown in Fig. 2. 
Chemical debonding is assumed to occur over the 
stress transfer length 0L1, adjacent to the crack 
faces, over which the strains in fibre and matrix 
are different. Following chemical debonding 
the differential movements occurring over this 
debonded interface result in frictional energy 
losses. 

The computation of  the rate of  release and 
absorption of  strain energy with increasing crack 
length is carried out in the following way. The 

elliptical zone around the crack is assumed to be 
divided into a number o f  parallel independent 
zones each aligned with the loading direction. The 
strain energy released and absorbed by each strip 
(compared with the initial uncracked matrix con- 
dition) is then calculated and this is summed 
numerically over half of  the elliptical zone. This 
calculation is then repeated for a small increase in 
crack length to enable the rates o f  increase and 
absorption of  strain energy with increasing crack 
length to be obtained. Since the work of  fracture 
and volume fraction of  the matrix is also known, 
the critical crack length can be calculated at which 
the rate of  release of  strain energy becomes equal 
to the rate at which energy is being absorbed by 
the various processes. Alternatively, for a crack of  
fixed length, the bulk strain values, e~, can be 
obtained at which the crack becomes unstable. 

The section through the assumed strain field 
illustrated in Fig. 2 has been shown [1] to be des- 
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Figure 2 Section through a quadrant of the 
strain field. Uniform strain in composite 
with uncracked matrix indicated thus 
X X X X. Shaded areas indicate the amount 
of fibre extension and contraction generated 
by the matrix crack. 
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cribed by the following equations: 

er = {et3L3/[Q(P + e~/L3) -z + La/e~] }l/z 

e u = 1.1 (P + Q + e~/L3) 

L1 = er (P + e[3/L3)-I,L2 =L3 er/et3 

L3 = 3 (a z --z2) 1/2 (2) 

where P =  2Vfr /EmVmr and Q = 2r/E~r. The 
values of er, e u, e~, LI ,  L2 and L3 are defined in 
Fig. 2 and the value of z defines the distance of 
the section considered from the centre of the 
crack. Vf and Vm are the fibre and matrix volume 
fractions, respectively, and the fibre diameter is 
2r. 

The strain energy released by a parallel sided 
strip width 6z and of unit thickness positioned at 
a distance z from the centre of the crack is given 
by 6 Wrtz where, 

8WRz = [Eee}L3/2 --Eee~ (L~ ~L~)/6L~ 

-- Eee~ (L2 --L1)/2 -- Eme~ L1/6 

-- V~Ef (e~ + eue~ + e~)L1/6] 8z. (3) 

where Ef and Em are the fibre and matrix volume 
fractions, respectively, E c = EeVf + Em Vm and 
the other symbols used have their usual meanings. 

From Equation 3 the strain energy released 
over two quadrants of the elliptical zone on each 
side of the crack can be calculated by numerically 
integrating the strain energy released from a 
number of parallel strips as previous described. 
Sufficient accuracy is usually obtained if the zone 
is assumed to be divided into five parallel strips. 
The rate of release of strain energy with increasing 
crack length can then be obtained by numerical 
differentiation. 

Over a distance L~ from the face of the crack 
differential movement occurs between the fibres 
and the surrounding matrix. The energy absorbed 
by one cylindrical fibre over this distance can be 
shown to be given by, 

7rrre, L 2/3 (4) 

so that over a parallel sided strip, width 8z and 
unit thickness, within the quadrant of the partially 
relaxed elliptical zone we have for the absorption 
of energy by frictional losses, 

6WA~Z = VfreuL~bz/3r. (5) 

Hence the energy absorbed over two quadrants can 
be obtained by numerical integration. Again the 
rate of  energy absorption by frictional losses as the 
crack extends can be obtained by numerical differ- 
entiation. Energy is Jalso absorbed in the rupturing 

of the matrix - the rate of energy absorption per 
unit increase in crack length for a composite of 
unit thickness being given by VmTp where 7p is 
the work of fracture of the matrix. 

Work may also be expended in rupturing the 
fibre/matrix interfacial bond over the distance L1 
prior to the development of frictional losses over 
this length as displacements occur at the debonded 
interface. The surface area of each fibre which 
has to become debonded is 2rrrLl. The number 
of fibres per unit cross section of the composite 
is V~/Trr 2 so that, if the work of fracture for 
debonding is G a the work done on each side 
of the crack per unit increase in crack area will 
be given by, 

4VfLx Gd/r. (6) 

The critical value of e~ at which a matrix crack of 
arbitrary length will become unstable is obtained 
by computing the strain energy release rate for 
successive small increases in the value of et3 until 
the rate of release of strain energy with increasing 
crack length becomes equal to the sum of all of 
the energy absorbing terms. 

3. Suppression of matrix cracking in steel 
wire reinforced epoxy resin composites 

The suppression of matrix cracking in unidirec- 
tionally reinforced steel wire/epoxy resin com- 
posites was reported by Cooper and Sillwood [4] 
to occur under certain conditions. The tempera- 
ture of their experimental samples was reduced 
progressively to 77 K using a liquid nitrogen bath. 
This produced a tensile strain of about 0.007 in 
the resin matrix, as a consequence of differential 
thermal contraction, and in the case of most 
samples tested this resulted in the development of 
an array of parallel cracks in the resin matrix per- 
pendicular to the direction of fibre alignment. 
However, in the case of samples containing thin 
wires of diameter 0.10 and 0.12mm, present in 
volume fractions greater than about 50%, matrix 
cracking was not observed. An analysis of the 
mechanics of transverse cracking of a brittle 
matrix has been carried out by Aveston et al. 
[6]. This is based on a consideration of the change 
in energy associated with the transformation from 
an initially uncracked state to one in which a crack 
has traversed the full width of the composite and 
is hence, effectively, infinitely long. The cracking 
strain of the matrix, emuc, is given from this 
analysis as 
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Figure3 Computed strains at which unstable growth 
would occur for a matrix crack having a half length of 
5 mm. Fibre diameter 1.18 mm. 

= ( 1 2 r E f  g~f ')'m 11/3 
Gmu e ~ ~ )  (7)  

where 7m is the surface energy of the matrix, E e = 
Ef V~ + Em Ve, 2r is the fibre diameter and the other 
symbols have their usual meanings. Equation 7 
predicts high values for emu e as the fibre diameter 
becomes very small but predicts that emue will 
approach zero as Vf approaches zero. Hence, it is 
regarded as being applicable only when the pre- 
dicted value of emue is greater than the intrinsic 
failing strain of the matrix. Also Equation 7 does 
not include the crack length as a parameter neither 
does it deal with any work done in debonding the 
fibre matrix interface during matrix cracking. 

Cooper and Sillwood [4] used values of 1.75 
Jm -2 for 7m, the surface energy of the polymeric 
matrix, but expressed doubts as to the accuracy of 
this measurement. When this value and the other 
appropriate constants are inserted into Equation 
7 crack suppression is predicted in the matrix for 
fibre diameters less than 0.18 mm. In view of the 
uncertainties in the experimental determination of 
7m and % Cooper and Sillwood felt the agreement 
with the predictions of Equation 7 to be quite 
satisfactory. It was observed that matrix cracks 
could initiate in resin rich areas of a non-uniform 
composite containing fine wires but would not 
enter regions having high fibre volume fractions. 

In Figs. 3 and 4 the matrix strain at which a 
crack having a half length of 5 mm would propagate 
is computed from the theory outlined in Section 
2. This is shown as a function of fibre volume frac- 
tion and for different values of 7p (10, 3.5 and 
1.0 Jm-2). Here 3'p is taken as the effective work 
of matrix fracture and equal to 23'm. The other 
parameters are the same as those used by Cooper 
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Figure4 Computed strains at which unstable growth 
would occur for a matrix crack having a half length of 
5 mm. Fibre diameter 0.1 ram. 

and Sillwood [4] in their computations. The 
analysis indicates that, at fibre volume fractions 
of 50%, matrix crack growth would not be expected 
in a system containing wires 0.1 mm in diameter 
at a matrix tensile strain of 0.007 (Fig. 4) unless 
the value of 3'p becomes very low approaching 
1.0Jm -2. Conversely, in the system containing 
50% of wires 1.18 mm in diameter (Fig. 3), matrix 
crack extension would be expected at this strain 
value even for values of % of 10 Jm -2 . The chemi- 
cal debonding energy of the fibre matrix interface 
is assumed here to be zero in order to conform 
with the calculations carried out by Cooper and 
Sillwood. The computed matrix cracking strain 
would be enhanced by the inclusion of this par- 
ameter. 

According to the analysis presented here the 
strain at which a matrix crack will propagate will 
be a function of the crack length. However, at 
fibre volume fractions of 50% the calculations 
indicate that, for this particular system, the strain 
for unstable crack extension will be sensibly 
independent of crack length except for very short 
cracks having a length comparable with the fibre 
diameter. The model is clearly invalid for these 
conditions. However, as the fibre volume fraction 
is diminished, the strain for crack extension 
becomes more sensitive to crack length becoming 
inversely proportional to the square root of the 



crack length as the fibre volume fraction tends to 
zero. 

4. Failure of the 0 ~ ply in a 0 ~  ~ 
laminate 

Unless the relative thickness of the longitudinal 
plies in a 00/90 ~ laminate is very small, cracking 
of the transverse plies does not immediately cause 
the laminate to fail. Generally the load applied to 
the composite is supported by the longitudinal 
plies until they in turn fracture at their failing 
strain. In the case of the cross ply composites 
studied by Bailey et  al. [7], this occurred at a 
fairly consistent strain value. The same authors 
observed the onset of acoustic output in the 0 ~ 
CFRP material at strains of  about 60% of the 
failing strain. The acoustic output increases 
rapidly as the composite failing strains are 
approached and is generally assumed to be caused 
by fibre fracture. 

The model previously proposed to account 
for the mechanics of matrix fracture in fibre 
composites, outlined in Section 2, is modified here 
to deal with the propagation of a crack from a 
localized region of fibre fracture. Adventitious 
mechanical surface damage to a composite would 
be expected to cause localized fibre fracture 
extending to some little distance below the com- 
posite surface. Also regions in which fibres have 
fractured, essentially within a plane, either before 
or during fabrication or during initial loading can 
be expected to occur inside the body of a com- 
posite structure. 

It is assumed here that localized regions of  
damage are caused by fibre failure and that these 
develop into stable cracks bridged by intact fibres. 
The lengths of the stable cracks increase as the 
strain on the composite is increased until unstable 
extension occurs by the fracture of the still intact 
crack bridging fibres. The possibility of composite 
failure due to the linking of stable transverse 
cracks through failure of the matrix in longitudinal 
shear is not considered. Other forms of failure such 
as longitudinal splitting (shear back) and the 
development of damage zones which are usually 
associated with the presence of a notch of appreci- 
able size and/or cyclic loading are also not con- 
sidered in this analysis. 

4.1. Theory 
The idealized physical model, upon which the 
analysis developed here is based, is illustrated in 

Figure 5 Schematic illustration of a planar zone of damage 
surrounded by partially relaxed material. 

Fig. 5. A region of damge of arbitrary size is 
considered to be present and this is characterized 
by the local fracture of an arbitrary number of 
fibres. The ends of the broken fibres are assumed 
to be located within a single plane so that the 
region of damage can be assumed to behave as a 
crack bridged by those fibres which remain intact. 
The broken fibres and the polymeric binder are 
assumed to form the "matrix" and the properties 
of  the broken fibres and the polymeric binder are 
summed to give the average work of fracture and 
elastic modulus of  the matrix measured in the 
direction of fibre alignment, (which is also the 
loading direction). Hence the elastic modulus of 
the "matrix" increases as the proportion of frac- 
tured fibres increases. 

The crack may initiate at a relatively low stress 
value in a small region in which a high proportion 
of the fibres have fractured. As the crack extends 
it is assumed to encounter and bypass unfractured 
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fibres so that the proportion of crack bridging 
fibres increases. During the growth of the matrix 
crack work has to be done in the further debond- 
ing of the interface between the crack bridging 
fibres and the matrix and in rupturing the matrix 
and those fibres which fracture. Also work is 
expended in frictional losses occurring as a conse- 
quence of displacements between the crack bridg- 
ing fibres and the surrounding matrix. These pro- 

cesses stabilize the crack at a given composite 
strain value. The crack bridging fibres carry an 
enhanced strain so that eventually the crack will 

- become unstable by the sequential failure of crack 
bridging fibres. This critical composite strain value 
is governed by the fibre strength distribution and 
the various physical processes associated with the 
mechanics of failure. 

In the system considered here work is expended 
in rupturing the fibre/matrix interfacial bond over 
the distance 0Lt (Fig. 2), as defined in Equation 
6, prior to the development of frictional losses. 
This term relates only to the fibres which remain 
intact and bridge the crack and has to be added to 
the matrix work of fracture term in deriving an 
energy balance as the condition for crack growth. 
We first consider the stable growth of a matrix 
crack as e~ is increased. 

It is necessary to include the work of fracture 
of that proportion of the fibres which fracture as 
the crack extends. We assume initially that the 
proportion of fibres which have fractured and 
which do n o t ,  therefore, bridge the crack will 
remain the same as the crack extends. If N is the 
proportion of fibres which have fractured and 
V~ is the total volume fraction of fibres in the 
composite then the proportion intact will be given 
by V~ (1 - -N)  = V~ since the fractured fibres are 
considered to form part of the matrix. Hence, the 
matrix elastic modulus E m is now given by, 

E m = (VpEp + N V~Ef)/Vm (8) 

where Vm = (1 -- V~). Vp isthe volume fraction of 
the polymeric material so that Vp = (1 -- V~). Ep 
is the elastic modulus of the polymeric material. 

Energy losses developed by fibres which frac- 
ture before the point of crack instability is reached 
(with N held constant) are not considered to con- 
tribute to the rate of energy loss at instability). 
However, the work of fracture of those fibres 
which have to fracture in allowing the crack to 
extend by an infinitesimal amount at instability 
with N held constant is taken into account. Thus 
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the matrix work of fracture is given by, 

Gm = (VpWp~ + N V~Wff)/Vm (9) 

where Wp~ is the work of fracture of  the polymeric 
material and W~ is the work of fracture and the 
fibres themselves. 

The peak strain carried by the crack bridging 
fibres is denoted by e u (see Fig. 2 and Equation 
2). Its value is relatively insensitive to the distance 
of any particular fibre from the centre of the crack 
except for positions very close to the crack tip. In 
order to simplify the calculation, the strain carried 
by a fibre at a point located mid-way between the 
centre of the crack and the crack tip is regarded as 
representative of the strains carried by all Of the 
crack bridging fibres. Given a range of fibre failing 
strains the proportion of fibres which would have 
been expected to fracture over the length of the 
crack as a consequence of the enhanced strains 
carried by them can be calculated. This is defined 
as FN. Calculations have been made [8] of the 
mechanics of transverse crack growth and tensile 
failure of a composite containing a 60% volume 
fraction of unidirectionally aligned type III carbon 
fibres. The fibre elastic modulus was taken as 
200 GPa and the fibre failing strains were assumed 
to be uniformly distributed between 0.01375 and 
0.01875. This range of failing strains is similar to 
that observed by Barry [9]. ,The proportion of 
fibres fractured, FN, at a representative strain 
values of e u is given by 

FN = (e u -- 0.01375)/0.005 

for 0 < F N <  1.0. (10) 

The half crack length, a, was set at three 
arbitrary sizes, 0.001, 0.0002 and 0.00005m. 
Four values of the work of interfacial debonding 
Gd were taken: 0, 5, 15 and 100Jm -2. Two values 
of residual frictional interaction between the fibres 
and the matrix after debonding were used. These 
were 1 and 10MPa. The elastic modulus of the 
polymer (Ep) was taken as 4 GPa, its work of frac- 
ture (Wp~) as 200 Jm -z and the work of fracture 
of the fibres (Wn) as 150 Jm -2. 

For each combination of the above properties 
the critical strain for crack propagation was first 
computed for a value of N of unity. This condition, 
therefore, corresponded to one in which all the 
fibres had fractured over the length on the arbi- 
trary crack. The critical strain for crack extension 
was obtained by incrementally increasing the value 
of e~ until the computed rate of release of strain 



energy with increasing crack length became equal 
to the corresponding rate of absorption of energy. 
This latter term was a sum of the energy being 
absorbed in the further debonding of the inter- 
faces of the intact fibres, the further frictional 
losses incurred by displacements at the interfaces 
after debonding, the work of fracture of the poly- 
mer matrix and the work of fracture of the frac- 
turing fibres. 

When N is unity the critical strain values for 
crack extension is small and in computing its 
value the assumption is made that the value of 
N will remain constant as the crack extends. In 
general this will not be the case and the crack will 
become bridged by an increasing proportion of 
intact fibres as it extends. The effect of the 
increased proportion of crack bridging fibres is to 
reduce the critical strain for further crack propa- 
gation below that required for crack initiation so 
that crack growth ceases. Stable crack extension 
then occurs if the composite strain ep is increased. 
Numerical values can be obtained for these con- 
ditions using the analysis outlined above quite 
straightforwardly if it is assumed that the fractured 
fibres are uniformly distributed over the length of 
the crack. The situation is illustrated in Fig. 6. For 
example, a crack having an initial half length of 
0.05 mm over which all the fibres have fractured 
will propagate at a composite strain of about 
0.003. A crack four times this initial length (half 
length 0.2 mm) will be stable at this strain value if 
an many as 70% of the fibres encountered by the 
crack have fractured, (for r = 10 MPa and Ga = 
0 Jm-~). If the initial crack encounters only intact 
fibres as it extends the proportion of fractured 
fibres averaged over its new length of 0.2mm 
would be only 25%. Clearly for this particular 
situation the initial crack, propagating at a con- 
stant strain of 0.003, will become stable before 
reaching a half length of 0.2 mm. An increase in 
composite strain over the value 0.003 will then 
cause the crack to extend again to a new stable 
length corresponding to the enhanced strain value. 
Stability will have been obtained because, although 
the crack has increased in length, the proportion 
of fractured fibres over its length will have been 
further reduced. Thus stable crack growth at 
increasing composite strain values will be expected 
provided a sufficiently high proportion of fibres 
remain intact and bridge the crack faces. 

Eventually, at some particular crack length and 
composite strain value, the theoretical model pre- 
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Figure 6 Composite strain values for stable flaw extension. 
Catastrophic failure due to sequential failure of crack 
bridging fibres indicated thus ;. Values of r = 10MPa 
indicated by full lines, r values of 1 MPa indicated by 
dashed lines. Computations relate to three flaw sizes 
(a = 1, 2 and 0.05 mm). (Redrawn from [8] .) 

dicts that the additional strain carried by the crack 
bridging fibres will cause the fracture of a suffic- 
iently high proportion of them to allow instability 
and uncontrolled crack extension by the progres- 
sive fracture of the remaining crack bridging fibres. 
The condition for this form of instability has been 
calculated in the following way. The proportion of 
broken fibres, iV, is first assumed and the effective 
strain carried by the bridging fibres at the com- 
posite strain for stable flaw growth is computed as 
described above. From this data the proportion of 
the crack bridging fibres which would have been 
expected to fracture, FN, is calculated from the 
known distribution of fibre strengths using equation 
10. If FN<N,  the value of N is reduced and the 
calculation repeated. This results in an enhanced 
strain for stable crack extension. (Note that for 
each incremental reduction in N, the new condition 
for crack growth is calculated on the assumption 
that N will remain constant as the crack extends.) 
The new enhanced value of eg for crack growth 
causes an increase in ev and hence an enhanced 
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value of FN. The value of N is again compared 
with that of FAr and the cycle of  computation 
repeated until the two values are equal. For this 
condition the crack is unstable because any increase 
in e~ increases the proportion of crack bridging 
fibres which have fractured thus destabilizing the 
crack. 

4.2. Discussion 
The acoustic emission noted by Bailey et al. [7], 
from unidirectional carbon fibre reinforced com- 
posites at strains in excess of 0.007, may have 
been caused by fibre and matrix fracture occurring 
during the stable extension of small regions of  
initial damage according to the model proposed 
here. Final fracture may occur either by the 
unstable growth of an initially stable crack by 
sequential failure of the crack bridging fibres or by 
the linking together of stable cracks on different 
planes by shear failure of the matrix. 

In Fig. 6 the calculated strains for stable crack 
growth (assuming a constant value of N during 
crack extension) are shown plotted against the 
composite strain e#. The fibre volume fraction is 
taken as 60% and the fibre diameter 10 pm. The 
full lines correspond to values of r,  (the residual 
interfacial frictional shear strength), of 10 MPa and 
the dashed lines to r values of 1 MPa. The effects 
of fibre/matrix debonding energies, Gd, ranging 
from zero to 100 Jm -2 are considered. This com- 
posite system corresponds closely to that studied 
by Bailey et al. [7]. As N falls the proportion of 
crack bridging fibres increases and the strain value 
for crack extension, for a particular constant value 
of N, increases. As e~ is increased the strain carried 
by the crack bridging fibres is increased. However, 
for the conditions examined, this enhanced strain 
is insufficient to fracture any of the assumed 
intact crack bridging fibres until the value of et~ 
approaches closely the strain for unstable crack 
growth by sequential failure of  the crack bridging 
fibres. As this critical strain is approached the 
computed value of FNincreases rapidly to approach 
N. The condition that F N  = N defines the critical 
strain for unstable crack growth by this mech- 
anism and also defines the proportion of fibres 
which are required to stabilize a flaw of artibrary 
size. It is apparent from Fig. 6 that this proportion 
is a function of the debonding energy of the fibre 
matrix interface. As would be expected, the model 
predicts an increasing degree of flaw sensitivity, or 
brittleness, as the coupling between the fibres and 
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matrix is enhanced. The flaw sensitivity increases 
if both the chemical debonding energy and the 
residual frictional interfacial reaction are increased. 
However, it is interesting to note that, for flaws 
of arbitrary size, enhanced failing strains are pre- 
dicted by the model if G a is large and r is small. 
The physical reason for this is that for the con- 
dition only a few high strength fibres are required 
to stabilize a flaw. 

The smallest half crack size (a) considered in 
Fig. 6 is 0.00005 m and this corresponds to the 
failure in one plane of about eight adjacent fibres. 
If  the flaw is located at the surface this corresponds 
to damage extending to four fibre diameters 
below the surface. Flaws of at least these dimen- 
sions seem very likely to be present. The com- 
posite failure strain is not reduced significantly 
by flaws having a half length up to 0.001 m, 
providing both G d and r are small, but the com- 
posite strength is predicted to fall considerably 
when large flaws are present and when G d and r 
are large. 

This effect is predicted to be more apparent 
in the case of high elastic modulus carbon fibres 
[8]. The numerical values of the failing strain of 
the composite system described in Fig. 6 are 
approximately 0.012 over a fairly wide range of 
flaw sizes and composite properties. These values 
are similar to the experimental failing strain values 
of 0.116 + 0.004 observed by Bailey etal.  [7] for 
a similar unidirectional system. The fracture strains 
of the 0o/90 ~ laminates investigated by these 
authors were governed by the failing strains of the 
0 ~ plies. These values were again very similar 
being consistently at a level of about 0.011. 

5. Failure of the transverse plies in 0~ ~ 
laminates 

A modified version of the strain field theory des- 
cribed above has been developed previously [3] 
to describe the mechanics of cracking of a trans- 
verse ply in a 0o/90 ~ laminate. A through crack of 
arbitrary length is considered to be present in the 
transverse ply as indicated in Fig. 7 and the strain 
at which this crack will propagate is computed. 
Stress transfer now takes place across the interply 
interface and Equation 2 can be modified to deal 
with a laminate by making the following sub- 
stituations: T1 for V~, Tt for Vm El for E, ,  E t for 
E m and 1/T1Tto t for 2/r, where Ttot is the total 
thickness of the two ply laminate, T 1 and Tt are 
the effective volume fractions of the longitudinal 
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Figure 7 Schematic representat ion of  a "uni t  cell" two 
ply 0~ ~ laminate  showing an edge crack in the 90 ~ 

ply. 

and transverse plies, respectively, and E 1 and T t 
are their elastic moduli measured in the direction 
of  loading. The value of  r now refers to the effec- 
tive rate of shear stress transfer across the interply 
interface. Thus the conversion of Equations 2 to 
deal with laminates effectively describe a "fibre 
equivalent system" in which the fibre diameter 
is given by 4(TiTtot) and is thus generally much 
greater than the diameters of the individual fibres 
in the plies. The two ply "unit cell" model shown 
in Fig. 7 can be applied to more complex laminates 
by setting up an array of  "unit cells" each con- 
taining one interply interface. If  the ply thick- 
nesses are not constant throughout the laminate 
then the "unit cells" have different dimensions 
and the theory predicts that, for a fixed initial 
flaw size, transverse ply cracking will occur at 
different strain values in the various transverse 
plies. 

It should be noted that the theory assumes a 
uniform strain throughout the thickness of  each 

ply. Clearly this approximation will not be valid 
near the interply interface since shear deformation 
must be generated over appreciable distances on 
each side of  the interface. The mechanism of stress 
transfer across the interply interface is assumed to 
operate at a constant value which is a further 
approximation. Despite these assumptions the 
simple theory has been shown to be capable of  
predicting transverse ply cracking strains observed 
in 00/90 ~ CFRP laminates [3] over a wide range 
of  laminate geometries including the condition 
when the 0 ~ ply is reduced to zero thickness. The 
assumptions made in carrying out these calculations 
are that cracks having a half length of  about 0.2 
mm are present in the transverse plies and that the 
effective constant rate of  shear stress transfer 
across the interply is 10 MNm -2 . These assumptions 
have been adhered to in computing the transverse 
ply cracking strain over a wide range of  two ply 
00/90 ~ "unit cell" laminate geometries. The results 
of  these calculations are shown in Fig. 8 where the 
0 ~ ply thickness is varied between zero and 1 mm 
and the 90 ~ ply thickness between 0.05 and 1 mm. 
The particular laminate geometries for which 
experimental data is available [7], reduced to two 
ply equivalents, are indicated in the diagram. The 
curves refer to two ply "unit cells" in which the 
thickness of  the 90 ~ ply (TPT) is held constant 
at the values shown as the thickness of  the 0 ~ ply 
(LPT) is varied. The transverse ply is assumed to 
contain a crack of  half length 0.2 mm and the 
lower horizontal axis indicates the composite 
strain at which the crack will propagate. No 
correction is made for thermal stresses produced 
by differential contraction of  the plies from the 
curing temperature of  the polymeric matrix. The 
curves converge at the failing strain of  the trans- 
verse ply (containing a crack of  half length 0.2 
mm) as the thickness of  the 0 ~ ply tends to zero. 
In Figs. 9 and 10 the same calculations are repeated 
for crack half lengths of  1 and 5 mm, respectively. 

It is of  interest to note that for all of  the crack 
sizes investigated maximum stabilization is achieved 
when the 0 ~ ply thickness (LPT) reaches a value of  
about 0.2 mm. The calculations indicate that there 
is only a little increase in the transverse ply crack- 
ing strain as the 0 ~ ply thickness is increased above 
this value. Also when the thicknesses of  both the 
0 ~ and 90 ~ ply are small (about 0 . 1 m m ) t h e  
laminate strain for crack extension becomes insen- 
sitive to the length of  the crack in the transverse 
ply. 
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During the course of  these computations an 
error was discovered in previously published calcu- 
lations of  cracking strain values for 90o/00/90 ~ 

composites in which a crack is assumed to propa- 
gate in only one of  the transverse plies [3]. A 
recalculation indicates that very little difference 
would be expected in the cracking strain values 
for crack growth in one or simultaneously in both 
transverse plies. The two calculated curves together 
with the experimental values obtained by Bailey 
et al. [7] are shown in Fig. 11. 

6 .  C o n c l u s i o n s  
As shown in Section 2 the model  predicts with 
reasonable accuracy the suppression of  crack 
growth in epoxy resin reinforced with steel wires. 
The observed growth of  cracks in resin rich areas, 
which subsequently become stabilized as they 
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Figure 8 Calculated cracking 
strains for the 90 ~ ply in a 0~ 
90 o two ply laminate. Crack of 
half length 0.2 mm aligned 
parallel to the fibres assumed to 
be present in the 90 ~ ply. TPT 
= 90 ~ ply thickness. LPT = 0 ~ 
ply thickness. Experimental 
samples studied in [7] shown 
thus []. 

encounter crack bridging fibres, is also predicted 
by the model.  Good correlation between the pre- 
dictions of  the model,  modified so as to apply to 
laminates, and the observed cracking strain of  the 
transverse ply in 00/90 ~ CFRP laminates is also 
found. The model  can be used to predict the effect 
of  very low proport ions of  0 ~ plies and also the 
behaviour of cracks of various lengths in the trans- 
verse plies, and these are described in Section 4. In 
deriving this version of  the strain field model  the 
further assumption that the strains developed are 
uniform throughout  the thickness of  each ply is 
made. On the basis of  this assumption the calcu- 
lated enhanced strains carried by the fibres of  the 
crack bridging 0 ~ ply are insufficient to cause fibre 
failure over the range of  laminate geometries 
investigated in Section 4 and this result is in agree- 
ment with the general observation that  cracks in 

0"05 

I 

E 
E 

t - -  

a_ 0.5 
J 

0-002 

1 5 7 4  

II 

i 

0.004 

] [] [3 

/ / ,, 
0'0;6 ' 0'0~38 

CRACKING STRAI N 

[] 

' 0.010 
i 

0.012 

Figure 9 Calculated cracking 
strains for the 90 ~ ply in a 0~ 
90 ~ two ply laminate. Crack of 
half length I mm aligned parallel 
to the fibres assumed to be pre- 
sent in the 900 ply. TPT = 90 ~ 
ply thickness. LPT=0 ~ ply 
thickness. Experimental samples 
studied in [7] shown thus ~. 
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the transverse plies do not  enter the longitudinal 
plies. However, it is to be expected that stresses 
higher than those computed  would be developed 
in the fibres near to the surface of  the 0 ~ plies, 
because of  local perturbat ions of  the assumed 
strain field, so that localized fibre fracture might,  
in some cases, occur. In this context  it is interest- 
ing to note that Reifsnider [10] has reported the 
localized failure of  fibres in 0 ~ plies along lines 
corresponding to cracks in adjacent off-axis plies 
in laminates subjected to fatigue loading. 

The strain field model  is modified in Section 3 
to describe the mechanics of  transverse crack 
growth from a localized region of fractured fibres 
in a unidirectional composite system subjected to 
a tensile load applied in the direction of  the 
reinforceing fibres. Failure is assumed to proceed 
via the development of  stable cracks which even- 
tually become unstable due to the sequential 
failure of  the crack bridging fibres. This process 
implies the development of  a planar crack and the 
model predicts the increasing probabi l i ty  of  this 
process as the degree of  coupling between fibres 
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Figure 10 Calculated cracking 
strains for the 90 ~ ply in a 0~ 
90 ~ two ply laminate. Crack of 
half length 5 mm aligned parallel 
to the fibres assumed to be 
present in the 90 ~ ply. TPT = 
90 ~ ply thickness. LPT = 0  ~ 
ply thickness. Experimental 
samples studied in [7] shown 
thus []. 

i 
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and matr ix  increases in agreement with experi- 

mental observations. At reduced fibre matr ix  
coupling levels failure would be expected to occur 
by the linking together of an array of stable cracks 
as a consequence of  longitudinal shear failure in 
the matrix. On substituting typical fibre properties 
into the calculations the model  predicts tensile 
failing strains very similar to those observed for 
the 0 ~ plies of  unidirectional CFRP laminates. The 
model  can be used to predict the effect of  fibre 
strength distributions within a single population of  
fibres and also, in principle, the effect of  different 
fibre populations (hybrids) on the tensile failure 
processes occurring in unidirectional fibrous 
composites.  A particular feature of  the model  is its 
abili ty to describe the stabilization of  localized 
regions of  damage, extending over dimensions of  
the order of  many fibre diameters which must be 
present at least on the surface of  practical fibrous 
composites. 

It is interesting to note that the strain enhance- 
ment,  predicted to occur in the crack bridging 
fibres, would lead to their premature failure when 

Figure 11 Recalculated transverse ply crack- 
ing strains for 900/00/90 ~ CFRP laminate. 
Simultaneous crack extension in both 
transverse plies indicated thus - - .  Crack 
growth occurring in only one of the trans- 
verse plies indicated thus - - - .  Initial 
crack of half length 0.2ram assumed for 
both conditions. Experimental values from 
[71 indicated thus | 
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the  fibres are subjected to a corrosive envi ronment .  

Thus the widely observed delayed fracture effects 

in fibrous composi tes  subjected to aggressive 

envi ronments  are consistent  wi th  the predict ions 

of  the model .  
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